Investigation of material degradation during multiple recycling loops of a glass fiber reinforced polypropylene compound to evaluate life cycle analysis based on mechanical properties
DOI:
https://doi.org/10.21935/tls.v5i1.160Abstract
In order to reduce the global warming potential of their vehicles, automotive manufacturers are increasingly striving to use recyclates. However, recyclates often have weaker mechanical properties than comparable virgin polymers. Structurally, the weaker material properties can be compensated by an additional material effort. In semi-structural components of the vehicle interior, the bending stiffness is particularly important, which can be increased by a higher wall thickness to compensate for poorer mechanical properties, leading to higher component weights. The question is to what extent recyclates with poorer mechanical properties than virgin polymer result in CO2-reductions in the overall life cycle.
In this work, long glass fiber reinforced polypropylene is recycled several times and the mechanical properties are determined. An LCA is carried out, based on bending stiffness as a functional unit to compare the advantages of recyclates with the disadvantages of higher component weights.
It turns out that in a vehicle with combustion engine only the first recycling loop results in a smaller GWP than the virgin polymer. For a vehicle with electric drive, this is the case for the second recycling loop.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ilka Pfisterer, Roman Rinberg, Lothar Kroll

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Technologies for Lightweight Structures (TLS) agree to the following terms:
-
The corresponding authors confirm with their imprimatur that the article’s publication in Technologies for Lightweight Structures and the copyright terms have been approved by all the other coauthors.
-
Authors retain copyright and grant Technologies for Lightweight Structures the right of first publication.
-
If the paper is accepted for publication the content is licenced under a Creative Commons Licence “Attribution 4.0 International (CC BY 4.0)”. This permits use, distribution, and reproduction in any medium, provided the original work is properly cited, and is otherwise in compliance with the licence. Alternative Creative Commons Licences may be assigned in duly justified cases after consultation with the publisher (mail to: tls-journal@tu-chemnitz.de).
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., publish it in a book), with an acknowledgement of its initial publication in Technologies for Lightweight Structures.
-
Authors are permitted and encouraged to post the peer-reviewed, pre-copyedited version (post-print) of their articles online (e.g., in institutional repositories or on their website) prior to and during the submission process as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). If authors wish to republish an article, they are kindly asked to include the following acknowledgment as well as a link to the original source of publication in Technologies for Lightweight Structures to secure consistent citations:
This is a peer-reviewed, pre-copyedited version of an article accepted for publication in the open access journal Technologies for Lightweight Structures (TLS). The original publication with full bibliographic citation is available online at: xxx [insert DOI received upon publication].
For further questions, feel free to contact us via e-mail.