Characterization of the interlaminar fracture toughness of unidirectional thermoplastic composites
DOI:
https://doi.org/10.21935/tls.v5i1.157Abstract
In this study, the critical energy release rate in mode I (G1c) for thermoplastic composites made of carbon fiber (CF) and glass fiber (GF) with a polyamide 6 (PA6) matrix is investigated. Double cantilever beam (DCB) was used as the specimen for the mode I test, and the ASTM D 5528-13 was chosen as standard. Moreover, different methodological approaches were applied by comparing different data reduction schemes from the ASTM D 5528-13 and further analytic approaches from the literature. In addition to the conducted experiments, a numerical model of the DCB test is developed and the virtual crack closure technique (VCCT) is performed on the numerical model to determine G1c for PA6-CF and PA6-GF. For the interlaminar fracture toughness G1c a value of 2.87 mJ/mm2 was determined for PA6-GF and a value of 2.16 mJ/mm2 for PA6-CF, which indicate that the use of PA6 as matrix in a composite structure leads to good resistance to damage. A comparison of the different methodological approaches showed a good agreement between the analytical approaches from the literature and the ASTM D 5528-13. In contrast, the values generated for G1c by the VCCT method were significantly higher than those of the other methods.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Jakob Schmidt, Marcus Klingenhöfer, Jörg Kaufmann, Holger Cebulla, Lothar Kroll

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Technologies for Lightweight Structures (TLS) agree to the following terms:
-
The corresponding authors confirm with their imprimatur that the article’s publication in Technologies for Lightweight Structures and the copyright terms have been approved by all the other coauthors.
-
Authors retain copyright and grant Technologies for Lightweight Structures the right of first publication.
-
If the paper is accepted for publication the content is licenced under a Creative Commons Licence “Attribution 4.0 International (CC BY 4.0)”. This permits use, distribution, and reproduction in any medium, provided the original work is properly cited, and is otherwise in compliance with the licence. Alternative Creative Commons Licences may be assigned in duly justified cases after consultation with the publisher (mail to: tls-journal@tu-chemnitz.de).
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., publish it in a book), with an acknowledgement of its initial publication in Technologies for Lightweight Structures.
-
Authors are permitted and encouraged to post the peer-reviewed, pre-copyedited version (post-print) of their articles online (e.g., in institutional repositories or on their website) prior to and during the submission process as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). If authors wish to republish an article, they are kindly asked to include the following acknowledgment as well as a link to the original source of publication in Technologies for Lightweight Structures to secure consistent citations:
This is a peer-reviewed, pre-copyedited version of an article accepted for publication in the open access journal Technologies for Lightweight Structures (TLS). The original publication with full bibliographic citation is available online at: xxx [insert DOI received upon publication].
For further questions, feel free to contact us via e-mail.