Methodological approach to investigate the behavior of the structure under dynamic loading using multiple criteria decision-making method
DOI:
https://doi.org/10.21935/tls.v1i2.77Abstract
The main objective of this article is to develop a support approach for designers in the concept phase of the design process. In this paper, two different structures are investigated with metal, composite and hybrid material under dynamic loading with multiple strain rates. The optimum choice of material and structural combination is found by a methodological approach using a Multi Criteria Decision Making Method (MCDM). It uses a stepwise procedure in evaluating the significance of each criterion and ranks the different alternatives. This method is applied to solve various problems in the field of economics, engineering, management. In this article, COPRAS is used to rank different material and structural combination.
Cylindrical and rectangular structures are investigated under axial and 3-point bending load. Moreover, three different constellations of material widen the comparison; they are steel and aluminum, composite material with carbon fiber and thermoplastic matrix and hybrid material, with a combination of composite and metal. The output parameters from the simulation such as energy absorption and force, are further mathematically converted to specific energy absorption (SEA), crash-force-efficiency (CFE) and load non-uniformity (LU). PAM-Crash is used as a solver for simulation.Downloads
Published
Issue
Section
License
Authors who publish with Technologies for Lightweight Structures (TLS) agree to the following terms:
-
The corresponding authors confirm with their imprimatur that the article’s publication in Technologies for Lightweight Structures and the copyright terms have been approved by all the other coauthors.
-
Authors retain copyright and grant Technologies for Lightweight Structures the right of first publication.
-
If the paper is accepted for publication the content is licenced under a Creative Commons Licence “Attribution 4.0 International (CC BY 4.0)”. This permits use, distribution, and reproduction in any medium, provided the original work is properly cited, and is otherwise in compliance with the licence. Alternative Creative Commons Licences may be assigned in duly justified cases after consultation with the publisher (mail to: tls-journal@tu-chemnitz.de).
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., publish it in a book), with an acknowledgement of its initial publication in Technologies for Lightweight Structures.
-
Authors are permitted and encouraged to post the peer-reviewed, pre-copyedited version (post-print) of their articles online (e.g., in institutional repositories or on their website) prior to and during the submission process as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). If authors wish to republish an article, they are kindly asked to include the following acknowledgment as well as a link to the original source of publication in Technologies for Lightweight Structures to secure consistent citations:
This is a peer-reviewed, pre-copyedited version of an article accepted for publication in the open access journal Technologies for Lightweight Structures (TLS). The original publication with full bibliographic citation is available online at: xxx [insert DOI received upon publication].
For further questions, feel free to contact us via e-mail.