Continuous Manufacturing of Piezoceramic Hybrid Laminates for Functionalised Formed Structural Components

Frank Ullmann, Ricardo Decker, Alexander Graf, Verena Kräusel, Michael Heinrich, Wolfram Hardt, Lothar Kroll, Dirk Landgrebe

Abstract


While in general manufacturing and functional integration are separated steps, in this article a continuous mass-production enabled procedure is discussed. The essential component of the manufactured laminate is a functionalised thermoplastic film that is combined with piezoceramic powder (lead zirconate titanate - PZT) and carbon nanotubes (CNT). The challenge is to achieve optimal electrical and electromechanical properties and a good processability while simultaneously preserving the high toughness of the composite and the required adhesive strength with the joined metal sheet. Determining the optimal joining and surface treatment parameters by identifying the interlaminar shear strength between the metal and plastic components allows for a continuous rolling production process with a subsequent roll forming process. Further investigations on the forming properties are concerned with the optimal placement of the sensors as well as the arrangement and shape of the electrodes. A neural network approach is evaluated to facilitate detection and localisation of external forces in order to use such functional hybrid laminates for new operating concepts in the interior of motor vehicles or for structural health monitoring.

Full Text:


PDF


DOI: http://dx.doi.org/10.21935/tls.v1i1.64