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Abstract 

Structural health monitoring (SHM) is necessary for modern technical development. It can be achieved 
by detecting different quantities such as pressure and strain using highly sensitive and stable sensors. 
In this work, epoxy/multiwalled carbon nanotubes (MWCNTs) is used as sensing material to detect both 
strain and pressure. To ensure better performance, dispersion fabrication process was firstly optimized 
via electrical and microscopic measurements. Then, the piezoresistive performance such as the 
sensitivity, linearity, stability and drift were investigated under pressure and strain for films prepared with 
different carbon nanotubes (CNTs) concentration and thickness to define the optimal conditions for each 
sensing target. 

The piezoresistive measurement shows good sensitivity to strain at very low CNTs concentration 
0.3 wt. % with a gauge factor (GF = 11.094); which is around 6 times higher than conventional strain 
sensor, proving the efficiency of the optimized fabrication process parameters that ensure a 
homogenous distribution. Furthermore, the sensing layer shows also the ability to sustain high pressure 
load. The sensitivity is found to be highly dependent on the film thickness with higher sensitivity for 
thicker films in case of pressure sensing in addition to the good sensitivity at very low-pressure range. 
All these results prove the efficiency of Epoxy/MWCNTs as multi-purpose sensor material. 

1 Introduction 

Because of the excessive loading conditions and long-term deterioration, damage of structures can be 
occurred during their operational lifetimes. In order to control structures state, conventional strain 
sensors such as metallic strain gauges are usually used [1]. However, these sensors are not highly 
sensitive (GF = 2) and accurate to detect and locate damage effectively. 

Therefore, developing sensors with high sensitivity and stability to external load and can be embedded 
in different complex structures form is remaining challenging [2, 3]. Among several possible smart 
materials, polymer/carbon nanotube (CNT) nanocomposites are gaining great attention as they can be 
used as sensing element to detect different quantities such as strain and pressure, providing a good 
alternative to conventional materials, as they offer higher sensitivity [4, 5].  

In fact, the conductance of polymer/CNTs nanocomposites can be dramatically changed under an 
external load. Owing to this piezo-resistance property, polymer/CNTs nanocomposites have great 
potential for the realization of stable, sensitive, scalable and low-cost sensors. 

However, the realization of this smart material is usually challenging as the CNT tend to agglomerate 
within the polymer matrix because of the large surface area and van der Walls attractive force between 
carbon nanotubes [6]. 

file://///apl1/imkNetzlaufwerke/datenpool/09_Präsentationen_imk/03_Vortraege/190919--IMTC19_TU_Chemnitz/PAPER/191015-Copyediting/www.lightweight-structures.de
http://creativecommons.org/licenses/BY/4.0/


Technologies for Lightweight Structures 3(1) (2019) 

 

101 
 

 
 

Therefore, to realize a good performant sensing layer with less CNTs concentration, a homogeneous 
distribution of CNTs into polymer matrix have to be achieved. In this work, the sensing materials are 
produced using a simple and cost-effective method, which is the direct mixing. Epoxy/MWCNTs 
nanocomposites were prepared with different process parameters. Electrical and morphological 
characterizations were performed to examine the uniformity of the CNTs distribution at different 
fabrication process parameters. The best fabrication process is used to develop different sensors. 
Additionally, in this study, different aspects are considered such as the CNT concentration and the film 
thickness on the performance of pressure and strain sensors. 

2 Materials and methods 

2.1 Materials 

In this work, the required multi-walled carbon nanotubes were purchased from Sigma Aldrich and used 

as received. These nanotubes have the following characteristics O.D. × L 6-9 nm × 5 μm, and a degree 

of purity greater than 95 %. This type of multi-walled carbon nanotubes can offer polymers high electrical 

conductivity and high strength [7]. Epoxy resin L 20 is used, it will act as a polymer that contains CNT 

particles. It is purchased from R&G Faserverbundwerkstoffe composite technology, GmbH, Germany.  

2.2 Preparation of Epoxy/MWCNT nanocomposite 

Carbon nanotubes are hydrophobic in nature and have poor solubility with other materials and high 
aspect ratios and large surface areas, which make them tend to agglomerate into polymer matrix. 
Therefore, optimization of process parameters is required. Here, a simple and cost-effective mixing 
process is adopted. In this process, two different techniques were used which are sonication and 
magnetic stirring as shown in Figure 1. In fact, sonication is a powerful tool; responsible for separation 
of CNTs individually within the matrix while magnetic stirring is useful to have uniform distribution. 
However, excessive sonication energy or time can lead to damage CNTs wall [8]. Therefore, optimizing 
the sonication time is required to avoid CNT damaging.  

In this work, the sonication was performed for different amplitudes (15 %, 30 %, 45 %) corresponding 
respectively to (10.275 kJ, 20.55 kJ, 27.4 kJ) using a horn sonicator (Bandelin GM 3200, Sonication 
Temperature: 25 °C, Duty cycle: 50 %) for 30 min. Followed by magnetic stirring for 2 hours under a 
rotational speed of 400 rpm and heating temperature of 80 °C to form a homogeneous dispersion. To 
cure the material, the hardener was added to the mixture which was stirred for 15 minutes under the 
same conditions. Before deposition of the film, the solution was kept in the vacuum chamber for 
30 minutes in order to extract the excess air in the mixed solution, which was generated from the long 
stirring process at the high temperature. Using stencil printing, different films were deposit. After 
deposition, the samples were cured in the oven at a temperature of 160 °C for different hours owning to 
thickness in order to allow the surface of the CNT film to solidify. 

 

 

Figure 1: Fabrication process of epoxy/MWCNTs nanocomposite 

Magnetic stirringSonication DegassingM W C N Ts
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2.3 Characterization methods 

2.3.1 Electrical and microscopic characterizations 

Polymer/CNT nanocomposites are highly conductive when CNTs are dispersed uniformly within the 
polymer matrix [9]. In order to examine the impact of sonication energy on the dispersion quality, DC 
measurements were carried out using Sourcemeter Keithley 2602A with a Labview software interface. 
For validation of results, microscopic measurements were performed in the range of 1–2 μm using Leitz 
Aristomet microscope with a brightness of 3.0 and magnification of 5x.  

2.3.2 Piezoresistive characterization under different external load conditions 

To investigate the piezoresistive performance of the different prepared films, ten repetitive cycles were 
performed using universal testing machine TIRA at a crosshead speed 10 mm/min and force from 0 to 
40 N. In this measurement, the resistance of Epoxy/MWCNTs films was continuously recorded using a 
host computer connected to a Keithley 2602A Sourcemeter to investigate the sensitivity to strain 
deformation in addition to the sensor linear behaviour. 

In addition, to characterize the piezoresistive performance under pressure load, a custom build pressure 
measurement test bench interfaced with sourcemeter is used, which is equipped with high resolution 
load cell (K307M.200) that can exert a maximum load of 200 N. In this study, five repetitive cycles were 
performed using pressure test machine at speed of 2 N/s and force ranging from 0 to 180 N. In this test, 
the thickness of Epoxy/MWCNTs nanocomposite film is addressed. Therefore, five different films were 
fabricated with different thickness named from A to E and corresponding respectively to (A = 67 µm, 
B = 119 µm, C = 253 µm, D = 419 µm, E = 534 µm) and characterized under pressure. 

The investigation of sensor behaviour at very low load was also addressed, cyclic test was done for 
force ranging from 0 N to 15 N at a speed of 2 N/s. At the end, different samples were tested under fixed 
load of 180 N for more than 8 hours. 

3 Results 

3.1 Electrical and morphological characterizations 

According to the results, the film prepared at low sonication energy possesses a very high resistance. 
By increasing the sonication energy, the resistance is reduced sharply at 30 % energy indicating the 
efficiency of the sonication process to unbundle aggregated carbon nanotubes. However, excessive 
sonication leads to increase the resistance as shown in Figure 1, which can be explained by the 
destruction of CNTs walls. Microscopic characterization of nanocomposites illustrates uniform CNTs 
distribution and the existence of more conductive network when the sample is prepared with 30 % 
amplitude. 
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Figure 2: Electrical resistance depending on the sonication energy 

 

 

Figure 3: Microscopic images of the different composites depending on sonication amplitude, (a) 15 %,  

 (b) 30 % and (c) 45 % 

3.2 Epoxy/MWCNTs nanocomposites response under strain 

After the optimization of the fabrication process, the piezoresistive behaviour of different films prepared 
with 0.3 wt. %, 0.5 wt. % and 1.0 wt. % concentration was tested under 10 repetitive cycles. In fact, the 
piezoresistivity is defined as the change of resistance under applied load. To evaluate the sensitivity of 
the sensor to external load, the gauge factor “GF” can be calculated using the following equation: 

 

 𝐺𝐹 = (𝛥𝑅 / 𝑅0) / 𝜀 (1) 

 

Gauge factor is the ratio of relative change in electrical resistance R divided by the applied strain. 

Where ΔR is change in strain gauge resistance and R0 is unstrained resistance of strain gauge. 

Usually, the strain is obtained by calculating the static length of the sensor and the change of the length 
under the action of strain. 

 

 𝜀 =  𝑠𝑡𝑟𝑎𝑖𝑛 =  𝛥𝐿 / 𝐿0 (2) 

 

Where ∆𝐿 is the absolute change in length and L0 is the original length.  

(a) (b) (c)

https://en.wikipedia.org/wiki/Electrical_resistance
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Figure 4: Ten cycling strain measurement 

 

As it can be seen from Figure 4 and 5, the resistance is following the strain. For all the composites, the 
resistance is increased as strain increases and decreased when the force is released. The film prepared 
with high amount of CNTs show better stability and linearity than at low CNTs concentration a linear 
regression coefficient of 0.976, due to the weakness of tunneling effects [10]. This latter leads to reduced 
sensitivity. The increased sensitivity at very low CNT concentration from 1.203 at 1 wt. % to 11.094 at 
0.3 wt. % can be also explained by the reduced mechanical properties of the material leading to larger 
the distance between the adjacent CNTs. 

 

Figure 5: Resistance change vs strain at different CNT concentration 
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3.3 Epoxy/MWCNTs nanocomposites response under pressure 

 

Figure 6: Piezoresistive behaviour of different sensors under high pressure force 

 

The resistance change due to the external pressure at different film thickness is presented in Figure 6. 
According to this figure, film resistance is reduced when the pressure force is increased due to 
minimization of the gaps between neighbouring nanotubes. 

As the thickness of the nanocomposite film increases, the film resistance variation with the pressure 
force is increasing because of the increased possibility to form more conductive paths within the 
nanocomposite [11]. However, the resistance change of the film from C to E were reduced, which can 
be explained by the sedimentation of all the CNTs on the bottom of the film during the long curing 
process and leading to inhomogeneous CNTs distribution. The obtained results show that the film with 
thickness 253 µm has the best performance in terms of sensitivity and stability. The sensor sensitivity 
is found to be at high pressure range approximately 1.4 kΩ/N. This sensor shows also better sensitivity 

to low pressure range around 6.7 kΩ/N as illustrated in the cyclic measurement presented in Figure 7. 

 

Figure 7: Cycling test for the nanocomposite “C” at low pressure 
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To investigate the stability over time of the Epoxy/MWCNTs nanocomposites, drift test is performed as 

shown in Figure 8. The results show also that the film with 253 µm thickness has better stability over 

time under high pressure range, which indicates the efficiency of the chosen fabrication process to 

ensure good homogeneity of the nanocomposite sensor. A particular result was observed for film 

prepared with the lowest thickness; the resistance is reduced sharply over time because the material 

cannot afford high forces due to thickness issue. 

 

Figure 8: Drift test for different sensors thickness  

4 Conclusion 

Epoxy/MWCNT nanocomposites exhibit piezoresistive characteristics which make them have great 
potential for fabrication of multi-functional sensors to detect different targets in SHM. The developed 
nanocomposite sensors have multiple features. According to the piezoresistive measurement under 
strain, the nanocomposite shows good sensitivity to strain with a gauge factor (GF = 11.094); which is 
around 6 times higher than conventional metallic strain gauge sensor at very low CNTs concentration 
0.3 wt. %, proving the efficiency of the selected fabrication process to ensure a homogenous distribution. 
Different CNT concentration levels directly affect the conductivity and strain sensitivity of the sensor. By 
performing cyclic test, the sensor with 0.5 wt. % CNT concentration shows stable performance over 
cycling. 

Furthermore, Epoxy/MWCNT nanocomposites shows the potential to be as pressure sensor working up 
to 180 N. The sensitivity is found to be highly dependent on the film thickness with higher sensitivity for 
thicker films. In addition, Epoxy/MWCNTs film was highly sensitive to low-pressure range. 
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